首页> 外文OA文献 >Estimating ground-level PM2.5 by fusing satellite and station observations: A geo-intelligent deep learning approach
【2h】

Estimating ground-level PM2.5 by fusing satellite and station observations: A geo-intelligent deep learning approach

机译:通过融合卫星和电台估算地面pm2.5   观察:一种地理智能深度学习方法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Fusing satellite observations and station measurements to estimateground-level PM2.5 is promising for monitoring PM2.5 pollution. Ageo-intelligent approach, which incorporates geographical correlation into anintelligent deep learning architecture, is developed to estimate PM2.5.Specifically, it considers geographical distance and spatiotemporallycorrelated PM2.5 in a deep belief network (denoted as Geoi-DBN). Geoi-DBN cancapture the essential features associated with PM2.5 from latent factors. Itwas trained and tested with data from China in 2015. The results show thatGeoi-DBN performs significantly better than the traditional neural network. Thecross-validation R increases from 0.63 to 0.94, and RMSE decreases from 29.56to 13.68${\mu}$g/m3. On the basis of the derived PM2.5 distribution, it ispredicted that over 80% of the Chinese population live in areas with an annualmean PM2.5 of greater than 35${\mu}$g/m3. This study provides a new perspectivefor air pollution monitoring in large geographic regions.
机译:融合卫星观测和台站测量以估计地面PM2.5有望监测PM2.5污染。提出了将地理相关性整合到智能深度学习体系结构中的Ageo智能方法来估计PM2.5,特别是在深度信念网络(称为Geoi-DBN)中考虑地理距离和时空相关的PM2.5。 Geoi-DBN可以从潜在因素中捕获与PM2.5相关的基本特征。它在2015年接受了来自中国的数据的培训和测试。结果表明,Geoi-DBN的性能明显优于传统的神经网络。交叉验证R从0.63增加到0.94,RMSE从29.56减少到13.68 $ {\ mu} $ g / m3。根据得出的PM2.5分布,可以预测超过80%的中国人口生活在PM2.5年均值大于35 $ {mu} $ g / m3的地区。这项研究为大型地理区域的空气污染监测提供了新的视角。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号